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Abstract

A distance-function-based Cartesian grid (DIFCA) method is presented for conduction heat transfer in irregular geometries. The
irregular geometries are identified by distance functions. The finite-volume method is used to discretize the heat conduction equation.
Non-zero departure from regular geometries terms are added to the discretization equations for the control volumes bisected by irregular
boundaries. With these additional departure terms, the existing Cartesian finite-volume solver can be modified easily to model heat con-
duction in irregular geometries. Given boundary temperatures, given boundary fluxes and convective heat transfer at irregular bound-
aries are considered. Non-zero heat generation is also modeled. The proposed procedure is validated against eight test cases where good
agreements are achieved.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In numerical solutions of heat transfer and fluid flow
problems, the adopted grid system plays an essential role.
It affects among others data structure, ease of program-
ming, computational time, stability and convergence of
the solution. Therefore, an appropriate grid system when
employed would greatly simplify the solution process.

In this article, a regular geometry refers to a geometry
where the boundaries can be represented by surfaces of
constant coordinate lines in Cartesian coordinate system
and coincide with the boundaries of control volumes. This
special property of having surfaces of constant coordinate
lines coincide with the boundaries allows a straightforward
and accurate implementation of various discontinuities
such as, the boundary conditions, the properties, the heat
source and etc.

Unfortunately, regular geometries are a luxury in most
engineering problems. Rather, irregular and complex
geometries are normally encountered. These boundaries
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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are no longer representable by surfaces of constant coordi-
nate lines, leading to complications in capturing the bound-
aries and/or discontinuities.

Structured body-fitted coordinates (BFC) grids [1] have
been used to model the irregular geometries. These BFC
grids can be generated analytically or numerically. Con-
duction heat transfer [2] and fluid flow [3–5] problems have
been modeled using analytically generated BFC grids.
However, analytically generated BFC grids are restricted
to relatively simple irregular geometries. Numerically gen-
erated BFC grids have been used in recent works [6–10].

Unstructured mesh procedures have been used to model
irregular geometries [11–18]. Significant advances have
been made over the past decades on the development of
accurate and efficient solution procedures for the above-
mentioned mesh systems. However, generating high-
quality mesh for complex irregular geometries remains a
challenging task [19] and usually consumes the largest
amount of computational resources [20].

In an effort to reduce mesh generation time, attention
begins to shift back to employing grid system based on
Cartesian coordinates for problems with irregular bound-
aries. Unfortunately, a boundary of an irregular geometry
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Nomenclature

a coefficient in the discretization transport equa-
tion

b total source in the control volume (Eq. (10d))
d diameter
D Dirac delta function
f ratio of the distance defined by Eq. (12)
h convective heat transfer coefficient
H heaviside function
I indication function for the existence of interface

between two nodes, given by Eq. (14) alike
k thermal conductivity
K+ indication function to determine if the reference

phase occupies more than half a control volume,
given by Eq. (15)

K� indication function to determine if the reference
phase occupies less than half a control volume,
given by Eq. (17)

L length
Lx, Ly width and height of the domain
Nx, Ny number of control volume in the x direction and

y direction
q heat flux
_q volumetric heat generation
qc, qp constants in the boundary heat flux
R radius
Ri, Ro radii of the inner cylinder and outer cylinder
S rate of heat generation per unit volume, source

per unit volume
�S average source per unit volume

�S�c ; �S
þ
c constant portion of the source term

�S�P ; �S
þ
P variable portion of the source term

T temperature
TB known temperature at a physical boundary
x, y, x0, y0 coordinate axes

Greek symbols

dx, dy x distance and y distance between two nodes
ev eccentricity
/ angle
n global distance function for all interfaces
ni local distance function for the ith interface
D–V volume of a control volume
Dx, Dy width and height of a control volume
h dimensionless temperature

Subscripts

c center of the cylinder
extra addition due to ‘‘irregular” geometry
1 surroundings

Superscripts

1 the first interface
2 the second interface
n for the ‘‘irregular” geometry evaluated based on

the distance function
d departure from regular geometry
* the currently available values
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often does not fall on surfaces of constant coordinate lines
and thus cut through the underlying Cartesian grid system
arbitrary. The major task is to work out a procedure to
deal with the boundary that does not fall on the surface
of constant coordinate lines.

Of course the smooth boundary of the irregular geom-
etry can be approximated as a jagged boundary form by
a series of staircase in a Cartesian grid [21]. Boundary con-
ditions are imposed directly on the approximated bound-
ary. This approach does not give accurate solution unless
sufficiently fine grid is used to represent the irregular
boundary more accurately. Improvement can be made by
incorporating a local grid refinement procedure [22]. With
this, grid refinement is confined only to the regions near
the boundary while maintaining a relatively coarse grid
elsewhere.

To improve the accuracy in representing the boundaries,
modifications on the discretization equations across the
boundaries are made. In [23], additional grid points are
added to the boundaries. The discretization equations
across the boundaries are adjusted non-uniformly using
these added grid points so that the discretization equations
involve unknowns at the boundaries and from only one of
the side of the boundaries. Therefore, discretization across
the boundaries is avoided.

In the immersed boundary method, the staircase effect is
eliminated by discarding the Cartesian discretization equa-
tions for control volumes with irregular boundaries [24,25].
Special interpolation procedures are then introduced to set
the values of the dependent variables in these grids. This
approach, although better than the staircase practice, good
conservation of quantities is not observed near the irregu-
lar boundaries.

The cut-cell method [26–28] improves on the modeling
of irregular boundaries. A cut-cell refers to a cell that is
cut through by the boundary of the irregular geometry.
In the cut-cell method, special discretization procedure is
employed to discretize the conservation equation in the
cut-cells. The cut-cell can be reshaped in such a way that
the boundary of the cut-cell coincides with the irregular
boundary. Hence, even though the underlying grid is
Cartesian, the cells in the interfacial region are irregularly
shaped. The special discretization procedure and cut-cell
reshaping introduce extra issues to be considered.

In view of the above complications, it is most desirable
to formulate problem with irregular geometries as a



J.C. Chai, Y.F. Yap / International Journal of Heat and Mass Transfer 51 (2008) 1691–1706 1693
departure from regular geometries. Non-zero departure

from regular geometries terms are added to the discretiza-
tion equations for the control volumes bisected by irregular
boundaries. With these additional departure terms, the
existing Cartesian finite-volume solver can be modified eas-
ily to model heat conduction in irregular geometries. The
irregular boundaries are captured using distance functions.

The remaining of the article is divided into four sections.
A discussion on the representation of the irregular geome-
try is presented. This is followed by the mathematical
model with formulations of one- and two-dimensional con-
duction problems for irregular geometry presented sequen-
tially. Then, the overall solution procedure is outlined. To
validate the proposed model, a total of eight different prob-
lems are investigated with the results compared with exist-
ing analytical solutions whenever possible. Finally, a brief
conclusion is given.
2. Irregular geometries

In this article, an irregular geometry refers to geometry
where at least part of one interface does not fall on the con-
trol volume boundaries. Fig. 1 shows two situations where
irregular geometries are encountered. Fig. 1a shows a prob-
lem formed with two eccentric circles. Both the outer and
inner interfaces are irregular boundaries. Fig. 1b shows a
straight-edge geometry where the inclined interface does
not coincide with the control volume boundaries thus, con-
stitutes an irregular geometry for the Cartesian coordinate
system. In general, irregular geometry refers to a situation
where an interface between two ‘‘materials” does not coin-
cide with the control volume boundaries as shown in Fig. 1
(Fig. 1c shows an irregular geometry for a one-dimensional
ew P

Material 1

Control volume  
interfaces 

a b

c

Fig. 1. Irregular geometries: (a) eccentric cylinders, (b) inclin
situation). For one-dimensional problems, it is possible to
arrange the control volume interface to coincide with a
physical interface. Such arrangement is impractical, if not
impossible for multi-dimensional problems.
2.1. Types of interfaces

There are two types of interfaces namely, internal inter-
faces and physical boundaries. Internal interfaces include
but are not limited to, (1) interface which separates two
materials with different properties, and (2) interface which
divides two regions with different source. As the name
implies, physical boundaries are interfaces which represent
physical interface between the object of interest and the
surroundings. Irregular internal interfaces change the dis-
cretization equations for internal control volumes. Irregu-
lar physical boundaries on the other hand involve
changing the discretization equation and incorporation of
the boundary conditions into the boundary-adjacent con-
trol volumes.
2.2. Identification of the irregular interfaces

Fig. 2a shows an eccentric annulus. The two eccentric
circles form the outer and inner boundaries of the domain
of interest. The specifications of these two physical bound-
aries are shown here as an example.

A local signed distance function ni is introduced to sig-
nify an interface for each irregular interface. It is defined
as the shortest signed normal distance from the interface.
A global distance function n is then constructed by combin-
ing all the local distance functions to represents the inter-
faces for the whole domain of interest. At the interfaces
E

Material 2

Physical interface

ed boundary and (c) one-dimensional control volumes.
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Fig. 2. Sample distance function generation.

n̂

Γ
ξ = +1

ξ = 0 

ξ = -1 

ξ = -2 

fluid

solid

Fig. 3. Surfaces of constant signed distance function n.
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C, the distance function n = 0. Surfaces of constant n
around a typical domain of interest with only one physical
boundary (dashed lines) are shown in Fig. 3. The solid line
represents the irregular interface C. In order to differentiate
the two regions, n of a region can either be assigned a posi-
tive or a negative sign as long as n of the other region has
an opposite sign. The construction of both local and global

signed distance functions for a sample problem is discussed
next.

Fig. 2a shows an eccentric annulus to be modeled using
the distance-function-based approach. As shown in Fig. 2a,
the radii of the outer and inner cylinders are Ro and Ri

respectively. The centers of the two cylinders are offset by
a distance ev. A Cartesian mesh covering a 2Ro � 2Ro

square region is first generated (Fig. 2b). The first local dis-
tance function relative to the outer cylinder is generated.
This is accomplished by setting

n1
i;j ¼ Ro � Ri;j ð1Þ

where the subscripts i, j and o refer to node i, j and outer
cylinder respectively. The superscript 1 stands for the first

local distance function. The symbol Ro and Ri,j are the radii
of the outer radius and radius of node i, j respectively.
Further,

Ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;j � xc;oÞ2 þ ðyi;j � yc;oÞ

2
q

ð2Þ

In Eq. (2), xi,j and yi,j are the x and y coordinates of node i,
j respectively. Similarly, xc,o and yc,o are the x and y coor-
dinates of the center of the outer cylinder respectively.
Note that the distance function in the region outside of
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the outer cylinder which is not part of the physical problem
is negative. The first local distance function is shown in
Fig. 2b. Now the local distance function relative to the
inner cylinder is next generated. This is done through

n2
i;j ¼ Ri;j � Ri ð3Þ

where

Ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;j � xc;iÞ2 þ ðyi;j � yc;iÞ

2
q

ð4Þ

The meanings of various terms are quite obvious and are
not listed here. The distance function inside the inner cylin-
der is negative as shown in Fig. 2c. The global distance
function is obtained as

ni;j ¼ minðn1
i;j; n

2
i;jÞ ð5Þ

with this global distance function, both regions outside the
physical problem (regions outside the outer cylinder and
region inside the inner cylinder) are negative (Fig. 2d).
The global distance function in the annulus region is posi-
tive. The following are of interests:

1. The shortest normal distances to a solid boundary for all
nodes are given by Eq. (5).

2. In this example, both the inner and outer surfaces are
irregular boundaries. Here the regions with negative dis-
tance function are physically meaningless and thus the
values of dependent variables in these regions are of
no interests.

3. Other ready-made software can of course be used to
generate the distance-function array.
2.3. Remarks

A distance-function-based Cartesian coordinates-based
method to handle irregular geometries where the interfaces
ew P E
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Fig. 4. Control volume for (a) regular g
do not coincide with the control volume interfaces will be
presented. The final discretization equation for irregular
geometries with additional terms which signify departure

from the ‘‘regular” geometry formulation will be presented.
Detailed derivations are first presented using one-dimen-
sional control volumes. Extensions to two-dimensional sit-
uations are then presented.
3. Mathematical formulation

3.1. One-dimensional conduction

Fig. 4a shows a control volume arrangement for a one-
dimensional problem. The properties at the nodal point are
assumed to prevail over the whole control volume. Discon-
tinuities are captured at the control volume interfaces
namely, the w interface and the e interface respectively.
Fig. 4b shows a situation where the interface does not coin-
cide with the e interface. The distance function n is zero at
the interface. The nodal values of the distance functions
are the distance measured from the interface. To differenti-
ate the two regions, the sign is positive to the left of the
interface and negative to the right of the same interface.

The discretization of the conduction equation for the sit-
uation shown in Fig. 4a is first discussed. The discretization
equation for the irregular geometry (Fig. 4b) will then be
derived. The final discretization equation will be presented
with additional terms which signify departure from the
‘‘regular” geometry formulation for Fig. 4a.

Consider a one-dimensional heat conduction problem
governed by

d

dx
k

dT
dx

� �
þ S ¼ 0 ð6Þ
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eometry, and (b) irregular geometry.
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where x is the coordinate direction, k is the thermal con-
ductivity, T is the temperature and S is the rate of heat gen-
eration per unit volume. Integrating Eq. (6) over control
volume P (Fig. 4a or b) from w to e gives

k
dT
dx

����
e

� k
dT
dx

����
w

þ
Z e

w
S dx ¼ 0 ð7Þ

Eq. (7) is exact. The exact solutions for both situations
shown in Fig. 4 can be obtained if all the three terms in
Eq. (7) are known. The discretizations of one-dimensional
‘‘regular” (Fig. 4a) and ‘‘irregular” (Fig. 4b) geometries are
presented next.
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Fig. 5. Interface identifications.
3.1.1. ‘‘Regular” geometry

Discretization equation: For a ‘‘regular” geometry and
by using the piece-wise linear profile between nodal points
for conduction (Fig. 4a), Eq. (7) can be written as

ke

ðdxÞe
ðT E � T P Þ �

kw

ðdxÞw
ðT P � T wÞ þ �SP ðDxÞP ¼ 0 ð8Þ

where �SP is the average value of the source over control
volume P. The discretization equation can be written more
compactly as

aP T P ¼ aET E þ aW T W þ bP ð9Þ

where

aE ¼
ke

ðdxÞe
ð10aÞ

aW ¼
kw

ðdxÞw
ð10bÞ

aP ¼ aE þ aW ð10cÞ
bP ¼ �SP ðDxÞP ð10dÞ

Thermal conductivity: The thermal conductivities at the e

and the w interfaces are needed in Eq. (10). Physically, the
coefficients aE and aW where the thermal conductivities are
needed are the thermal conductances which are the inverse
of the thermal resistances. As a result, the concept of ther-
mal resistance is used to approximate the interface thermal
conductivities. For the situation shown in Fig. 4a, the ther-
mal resistance is

ðdxÞe
ke
¼ ðDxÞP=2

kP
þ ðDxÞE=2

kE
ð11Þ

Defining a factor fe based on the distances shown in Fig. 4a
as,

fe �
ðDxÞE=2

ðdxÞe
ð12Þ

Using Eq. (12), the thermal conductivity at the e interface
can be written as

ke ¼
1� fe

kP
þ fe

kE

� ��1

ð13Þ
The thermal conductivity at the w interface can be written
without any new concepts and is left for the explorations of
the reader.

Remarks: The discretization equation for ‘‘regular”

geometries is the same as the familiar discretization equa-
tion presented by Patankar [21]. The discretization equa-
tion for ‘‘irregular” geometry is presented next. It will be
formulated as departure from the ‘‘regular” geometry equa-
tion given in Eq. (9).
3.1.2. ‘‘Irregular” geometry

Identification of an interface: When an interface exists
between P and E, there are three situations which are of
interests. These are when (1) the control volume is occupied
mainly by the reference material, (2) the control volume is
occupied mainly by the secondary material and (3) the
material occupying control volume P is not important.
Fig. 5 shows three situations with the reference material
labeled by n > 0.

When an interface is located between P and E, the signs
of the distance functions nE and nP are opposite and thus
nEnP < 0. Therefore, the sign of the product nEnP is used
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to identify the presence of an interface between P and E.
Unless otherwise specified, the sign of a variable A will
be denoted as sign (A). Therefore, when an interface exists
between P and E,

IP ;E ¼ max½�signðnPnEÞ; 0� ¼ 1 ð14Þ

Otherwise, IP,E = 0. Note that IP,E = 1 implies the presence
of an interface between P and E. However, the exact loca-
tion of the interface is not known and thus the material
occupying control volume P is not important. As such,
IP,E = 1 for both situations depicted in Fig. 5a and b and
IP,E = 0 for the situation shown in Fig. 5c.

Fig. 5b shows a situation where the reference phase
(n > 0) occupied more than half of control volume P. This
situation can be identified using

KþP ¼ max½�signð0:5� HP Þ; 0� ¼ 1 ð15Þ

where

H P � ðDxÞþP =ðDxÞP ¼ ½0:5ðDxÞP þ nP �=ðDxÞP ð16Þ

The reverse of the situation is shown in Fig. 5c where the
reference phase occupied less than half of the control vol-
ume. This situation can be identified by

K�P ¼ max½signð0:5� H P Þ; 0� ¼ 1 ð17Þ

Discretization equation: For an ‘‘irregular” geometry
and by using the piece-wise linear profile between nodal
points for conduction (Fig. 4b), Eq. (7) can be written
as

kn
e

ðdxÞe
ðT E � T P Þ �

kw

ðdxÞw
ðT P � T wÞ þ �SþP HP ðDxÞP

þ �S�P ð1� H P ÞðDxÞP ¼ 0 ð18Þ

where �SþP and �S�P are the source terms associated with re-
gions of positive and negative distance functions respec-
tively. Note that the thermal conductance at the e

interface denoted by kn
e=ðdxÞe is now based on the distance

function.
As most readers are familiar with the finite-volume

method as presented by Patankar [21] which uses the ther-
mal conductance for a ‘‘regular” geometry as the coeffi-
cients, it is desirable to formulate the discretization
equation for ‘‘irregular” geometry with additional terms
which signify the departure from the ‘‘regular” geometry
formulation. To achieve this, Eq. (18) is rewritten as

kn
e

ðdxÞe
ðT E � T P Þ �

kw

ðdxÞw
ðT P � T wÞ þ �SþP HP ðDxÞP

þ �S�P ð1� H P ÞðDxÞP þ
ke

ðdxÞe
ðT E � T P Þ

� ke

ðdxÞe
ðT E � T P Þ ¼ 0 ð19Þ

The final discretization equation for Eq. (19) (with possible
physical interfaces between P and E, and P and W) is

aP T P ¼ aET E þ aW T W þ bP ð20Þ
where

aE ¼
ke

ðdxÞe
ð21aÞ

aW ¼
kw

ðdxÞw
ð21bÞ

aP ¼ aE þ aW þ ad
E þ ad

W � �Sþp;P HP ðDxÞP
� �S�p;P ð1� H P ÞðDxÞP ð21cÞ

bP ¼ ad
ET �E þ ad

W T �W þ �Sþc;P HP ðDxÞP
þ �S�c;P ð1� HP ÞðDxÞP ð21dÞ

ad
E ¼ IP ;Eðan

E � aEÞ ð21eÞ
ad

W ¼ IP ;W ðan
W � aW Þ ð21fÞ

an
E ¼

kn
e

ðdxÞe
ð21gÞ

an
W ¼

kn
w

ðdxÞw
ð21hÞ

where IP,E and IP,W are calculated using Eq. (14). In Eq.
(21), an

E is the thermal conductance for the ‘‘irregular”
geometry evaluated based on the distance function, an

w is
the w interface counterpart of an

E, ad
E is the departure from

the ‘‘regular” geometry thermal conductance due to the
presence of an ‘‘irregular” geometry, ad

w is the w interface

counterpart of ad
E, * is the currently available values of

the temperatures, �Sc is the ‘‘constant” portion of the source
term and �Sp is the coefficient of TP.

Thermal conductivity: The thermal conductivities based
on the distance functions at the e and the w interfaces are
needed in Eq. (21). Using the concept of thermal resistance,

ðdxÞe
kn

e

¼ jnP j
kP
þ jnEj

kE
ð22Þ

Defining a factor f n
e as

f n
e �

jnEj
ðdxÞe

ð23Þ

The thermal conductivity kn
e can be written as

kn
e ¼

1� f n
e

kP
þ f n

e

kE

� ��1

ð24Þ

Remarks: The discretization equation (Eq. (20)) is writ-
ten such that ‘‘irregular” interfaces located between P and
E, and W and P can be captured. Additional terms repre-
senting the departure from the ‘‘regular” geometry formu-
lation are added to the discretization equation. The source
term is written such that source from both sides of the
interface are accounted for. When the interface is an inter-
nal interface, no additional treatments are needed. How-
ever, when the interface is formed by the presence of a
physical boundary, the boundary condition must be
modeled.

Source terms: The additional source term due to the
presence of an irregular physical boundary must be
captured correctly to ensure proper energy conservation.
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If the physical boundary is located between P and the e

interface, no modifications to the source term of the bound-
ary-adjacent control volume are needed. When the physical
boundary (n = 0) is located between the e interface and E

(Fig. 6), the source term between the e interface and the
physical boundary (n = 0) must be included. This source
term is included as an addition to the source term of the
boundary-adjacent control volume P as

a0P ¼ aP � K�E �Sþp;EHEðDxÞE ð25aÞ
b0P ¼ bP þ K�E �Sþc;EH EðDxÞE ð25bÞ

where aP is the original coefficient given in Eq. (21c) and bP

is the original source term given in Eq. (21d). The term K�E
is calculated using Eq. (17).

Boundary conditions: Four types of boundary conditions
are possible at a physical boundary. These are (1) given
temperature, (2) given heat flux, (3) convective heat trans-
fer conditions, and (4) higher-order flux condition.

Given temperature – When the temperature at the phys-
ical boundary (n = 0) located between the P and E is
known (Fig. 6a), the known temperature TB must be spec-
ified at the physical boundary (n = 0). The known temper-
ature TB is implemented using Eq. (20) at control volume E
by (1) setting kE to a large number and (2) setting
�S�c;E ¼ MT B and �S�p;E ¼ �M . Here M is a large number
says 1030. Step (2) sets the temperature TE to TB and step
(1) ensures the proper evaluation of the thermal conduc-
tance in an

E (Eq. (21g)). The boundary flux can be calculated
through

q ¼ T B � T P

nP=kP
ð26Þ
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Fig. 6. Boundary-adjacent control volume with (a) given temperature
condition, and (b) given flux condition.
where nP is the distance between node P and the physical
boundary (n = 0).

Given heat flux – When the physical boundary (n = 0) is
located between the P and E (Fig. 6b), the known heat flux
q = qB = qc must be specified at the physical boundary
(n = 0). The known boundary flux is again incorporated
using a two-step approach. The thermal conductivity kE

is first set to 0. The boundary flux is then brought into
the computational domain through the source term for
control volume P as

b00P ¼ b0P þ IP ;Eqc ð27Þ
where b0P is given by Eq. (25b). The boundary temperature
can be calculated from

qB ¼
T B � T P

nP=kP
ð28aÞ

or

T B ¼ T P þ qB

nP

kP
ð28bÞ

Convective heat transfer – When the physical boundary
(n = 0) located between the P and E (Fig. 6b) exchanges
heat convectively with the ambient through qB =
h(T1 � T) = hT1 � hT = qc + qpT, the boundary condi-
tion is again incorporated using a two-step approach.
The thermal conductivity kE is first set to 0. The boundary
flux is then brought into the computational domain
through the source term for control volume P as

a00P ¼ a0P � IP ;Eqp ð29aÞ
b00P ¼ b0P þ IP ;Eqc ð29bÞ
For most engineering problems, the coefficient qp is natu-
rally negative. Similar to the given flux condition, the
boundary temperature can be obtained as

qB ¼ qc þ qpT B ¼
T B � T P

nP=kP
ð30aÞ

or

T B ¼ T P þ
nP

kP
qc

� ��
1� nP

kP
qp

� �
ð30bÞ

Closure: Note that the given flux condition is a special
case of the convective heat transfer condition with qp = 0.
For the last type of boundary condition namely, higher-
order boundary condition, the boundary flux is linearized
and recast as qc + qpT. This concludes the formulation of
the distance-function-based Cartesian coordinates method
for one-dimensional problems. The conduction term is for-
mulated as the departure from the ‘‘regular” geometry for-
mulation of Patankar [21]. The source terms are also
captured correctly with the proposed approach. Various
boundary conditions can be captured correctly. The
boundary flux and temperatures can be recovered correctly
as the distance function is the physical distance between the
boundary node and the nodal location of the boundary-
adjacent control volume.
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3.2. Two-dimensional conduction

3.2.1. Discretization equation

Following similar approach, the final discretization
equation for a two-dimensional control volume shown in
Fig. 7a is

aP T P ¼ aET E þ aW T W þ aN T N þ aST S þ bP ð31Þ

where

aE ¼
ke

ðdxÞe
DyP ð32aÞ

aW ¼
kw

ðdxÞw
DyP ð32bÞ

aN ¼
kn

ðdyÞn
DxP ð32cÞ

aS ¼
ks

ðdyÞs
DxP ð32dÞ

aP ¼ aE þ aW þ aN þ aS þ ad
E þ ad

W þ ad
N þ ad

S

� �Sþp;P H PD–VP � �S�p;P ð1� HP ÞD–VP þ aP ;extra

þ Qp;extra ð32eÞ

bP ¼ ad
ET E þ ad

W T W þ ad
N T N þ ad

ST s

þ �Sþc;P H PD–VP þ �S�c;P ð1� HP ÞD–VP þ bp;extra

þ Qc;extra ð32fÞ

ad
E ¼ IP ;Eðan

E � aEÞ ð32gÞ
ad

W ¼ IP ;W ðan
W � aW Þ ð32hÞ

ad
N ¼ IP ;N ðan

N � aN Þ ð32iÞ
ad

S ¼ IP ;Sðan
S � aSÞ ð32jÞ

an
E ¼

kn
e

ðdxÞe
DyP ð32kÞ

an
W ¼

kn
w

ðdxÞw
DyP ð32lÞ

an
N ¼

kn
n

ðdyÞn
DxP ð32mÞ

an
S ¼

kn
s

ðdyÞs
DxP ð32nÞ

where the volume of a control volume is

D–V ¼ DxDy ð33Þ

The meanings of various terms are explained with Eq. (21)
and are not repeated here. The underlined terms are the ex-
tra terms due to source next to a physical boundary. The
double-underlined terms are due to given flux condition
at a physical boundary. The Heaviside function HP is given
by

H P ¼
0 nP < �e
nPþe

2e þ 1
2p sin pnP

e

	 

jnP j 6 e

1 nP > e

8><
>: ð34Þ
The thermal conductivity ke is the same as the regular ther-
mal conductivity as presented by Patankar [21]. The ther-
mal conductivity based on the distance function kn

e is

kn
e ¼

1� f n
e

kP
þ f n

e

kE

� ��1

ð35Þ

where the factor f n
e is

f n
e �

jnEj
jnP j þ jnEj

ð36Þ
3.2.2. Additional source terms due to a physical boundary

Similar to the one-dimensional problem, two types of
boundary conditions namely, given temperature and given
flux will be discussed here. In both types of boundary con-
ditions, the addition terms due to the presence of source
must be added to the boundary-adjacent control volumes
as ap,extra and bp,extra in Eq. (32). For the situation shown
in Fig. 7b, the arrows show where the sources are distrib-
uted. For example, the source in control volume N is dis-
tributed into W and P. Therefore, for control volume P,
the extra sources can be written as

bP ;extra ¼ �Sþc;EHED–VEfE þ �Sþc;W H W D–VW fW

þ �Sþc;N H ND–VN fN þ �Sþc;SH SD–VSfS

þ �Sþc;NEH NED–VNEfNE þ �Sþc;NW H NW D–VNW fNW

þ �Sþc;SEH SED–VSEfSE þ �Sþc;SW HSW D–VSW fSW ð37aÞ
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aP ;extra ¼ ��Sþp;EH ED–VEfE � �Sþp;W H W D–VW fW � �Sþp;N H ND–VN fN

� �Sþp;SH SD–VSfS

� �Sþp;NEH NED–VNEfNE � �Sþp;NW HNW D–VNW fNW

� �Sþp;SEH SED–VSEfSE � �Sþp;SW HSW D–VSW fSW ð37bÞ

The factors f in Eq. (37) control how the source is distrib-
uted to the boundary-adjacent control volumes. Note that
the source of control volumes with an interface and

0 < H < 0.5 or K� = 1 must be distributed to boundary-
adjacent control volumes. As shown in Fig. 7b, the source
in NW must be distributed into W and P, NE into P and
etc. The factor fP for a control volume P with
0 < HP < 0.5, i.e. K�P ¼ 1, as shown in Fig. 7c can be calcu-
lated as

fP ¼
K�P
A

ð38Þ

where

A ¼ IP ;E þ IP ;W þ IP ;N þ IP ;S þ IP ;SE þ IP ;SW þ IP ;NE þ IP ;NW

ð39Þ

Using this simple approach, the extra source in control vol-
ume P of Fig. 7c is distributed equally into NE, E, SE and
S. If needed, more advanced distributions can be derived.

When a non-zero source is encountered, the redistribu-
tion of the source to the boundary-adjacent control vol-
umes is performed for both given temperature and given
flux conditions as discussed above. Additional treatments
specific to the two types of boundary conditions are dis-
cussed next.
3.2.3. Boundary conditions
Two types of boundary conditions namely, given tem-

perature and given flux are discussed here.
Given temperature TB: When n < 0 (the shaded region of

Fig. 7b) occupied the regions outside of the computational
domain, the boundary temperature can be specified by (1)
setting the thermal conductivity k in the n < 0 region to a
large number and (2) setting �S�c ¼ MT B and �S�p ¼ �M in
the n < 0 region.

Given flux: When n < 0 occupied the regions outside of
the computational domain, the boundary flux q = qc + qpT

can be specified by using a two-step approach. First, the
thermal conductivity in the n < 0 region is set to zero.
Then, the heat transfer rate is incorporated into control
volume P via

ðQc;extraÞP ¼ qcK
þ
P D–VP DP

þ qcfED–VEDE þ qcfW D–VW DW

þ qcfND–VN DN þ qcfSD–VSDS

þ qcfNED–VNEDNE þ qcfNW D–VNW DNW

þ qcfSED–VSEDSE þ qcfSW D–VSW DSW ð40aÞ
ðQp;extraÞP ¼ qpKþP D–VP DP

þ qpfED–VEDE þ qpfW D–VW DW

þ qpfND–VN DN þ qpfSD–VSDS

þ qpfNED–VNEDNE þ qpfNW D–VNW DNW

þ qpfSED–VSEDSE þ qpfSW D–VSW DSW ð40bÞ

where the Dirac delta function is given by

DðnÞ ¼
½1þ cosðpn=eÞ�=2e jnj < e

0 otherwise

�
ð41Þ
3.3. Solution procedure

The solution procedure for the proposed distance-func-
tion-based Cartesian coordinates procedure is outlined in
this section.

1. Generate a Nx � Ny Cartesian mesh covering Lx � Ly.
2. Calculate the distance function n for all nodes as out-

lined in Section 2.2. Only the distance function in the
boundary-adjacent control volumes are needed in the
calculation procedure.

3. Calculate quantities related to physical boundaries I,
K+, K� and f given in Eqs. (14), (15), (17), and (38).

4. Start the iteration process
a. Calculate the extra source due to the physical bound-

aries as given in Eq. (37).
b. Set the thermal conductivity outside the physical

domain to a large number for given temperature con-
dition or to 0 for give flux condition.

c. For given flux condition, calculate the boundary heat
transfer rate terms given by Eq. (40).

d. Assemble the discretization equations as given by Eq.
(31).

e. Solve the linear equations.
f. Check for convergence. If solution has converged,

exit the iteration process. Otherwise, repeat the itera-
tion process.
5. Perform post processing.
4. Results and discussion

A total of eight different problems are used to validate
the proposed method. The first three problems (Section
4.2) are designed to test the ability of the method to capture
irregular geometries with known temperatures. The source
terms are set to zero for this first three problems. These
problems test the ability of the thermal conductance in cap-
turing the irregular geometries. Once the thermal conduc-
tance treatment is validated, source is introduced in the
next two problems (Section 4.3). These two problems test
the ability of the method in accounting for the source
terms. This is followed by two problems (Section 4.4)
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aimed to test the capabilities of the method to model spec-
ified heat flux and convective conditions at the irregular
boundaries. Lastly, an irregular geometry formed by a tri-
angle and 12 circles (Section 4.5) are studied to demon-
strate the capability of the method.
4.1. Computational grid

Fig. 8a shows a 2 � 1.2 space discretized into 41 � 21
Cartesian control volumes. A semi-circular physical
domain is captured using the distance function. The
boundary of the semi-circular geometry is shown using
thicken lines. When conduction inside the semi-circular
region is to be modeled using the proposed method, this
region is called the active region where the solution is
meaningful. The region outside of the semi-circular region
Fig. 8. Computational domains, (a) the w
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Fig. 9. Conduction in an annulus with specified boundary temperatures and
contours with staircase method, (d) temperature contours with the proposed m
is called the inactive region where solution is meaningless
and thus can be omitted from the calculation procedure.
When the computational mesh shown in Fig. 8a is used,
the inactive region can be ‘‘omitted” using the above
approach. The solution procedure can also be modified
to use the computational meshes shown in Fig. 8b. Both
approaches will lead to the same solution. As the objective
of this article is to test the validity of the method and not on
the solution procedure, the computational meshes shown in
Fig. 8a will be used.

4.2. Given boundary temperatures problems

The problems in this section test the ability of the newly
formulated departure from ‘‘regular” geometry terms ad

W ,
ad

E, ad
S and ad

N in Eqs. (32g)–(32j).
hole grids, (b) the active region grids.

Proposed 

e

zero source: (a) schematic, (b) computational meshes, (c) temperature
ethod, and (e) temperature distribution.
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Fig. 10. Conduction in semi-circular geometry with known boundary temperatures and zero source, (a) schematic, (b) computational meshes, (c)
temperature contours with staircase method, and (d) temperature contours with the proposed method.
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4.2.1. Concentric annulus with specified boundary

temperatures

Fig. 9a shows a concentric annulus. The inner radius of
the annulus is set to 0.5 while the outer radius is specified as
1. The temperature at the inner radius is set to 1 while the
temperature of the cold outer surface is kept at 0. The 2 � 2
domain is discretized into 11 � 11 control volumes as
shown in Fig. 9b. The temperature predicted using the
staircase method [21] and the proposed method are shown
in Fig. 9c and d respectively. As expected the staircase
method does not capture the exact solution as shown in
Fig. 9c. The proposed method on the other hand produces
the exact solution! Fig. 9e shows the temperature as func-
tion of radius. The exact solution is reproduced by the pro-
posed method with just 3 nodes in the annulus section.
4.2.2. Semi-circle with specified boundary temperatures

Fig. 10a shows a semi-circle with a radius Ro of 1. The
temperature of the curve surface is set to 1 while the flat
surface is kept at 0. The 2 � 1 domain is discretized into
11 � 5 control volumes as shown in Fig. 10b. The temper-
ature predicted using the staircase method [21] and the pro-
posed method are shown in Fig. 10c and d respectively.
These solutions are compared with the fine grid solution
obtained using polar coordinates. For this simple problem,
the fine mesh solution obtained using the polar coordinates
is considered the ‘‘exact” solution. From Fig. 10d, the pro-
posed method produces the ‘‘exact” solution!
Fig. 11. Conduction in a triangular enclosure with known boundary
temperatures, adiabatic boundary and zero source, (a) schematic, (b)
computational meshes, (c) temperature contours with staircase method,
and (d) temperature contours with the proposed method.
4.2.3. Triangular enclosure with specified boundary

temperatures and an adiabatic boundary

Fig. 11a shows a triangular enclosure. The two mutually
perpendicular sides are of unit length. The vertical surface
is perfectly insulated. The temperatures of the remaining
two surfaces are kept at 0 and 1 respectively. The compu-
tational domain is set to Lcos45� � 2L sin45�. This com-
putational domain is then discretized using 5 � 11 control
volumes as shown in Fig. 11b. The exact solution is given
by
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Fig. 12. Conduction in a triangular enclosure with known boundary
temperatures, adiabatic boundary and non-zero source, (a) schematic, (b)
temperature contours with staircase method, (c) temperature contours
with the proposed method, and (d) wall heat fluxes.
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T ¼ 2

p

X1
n¼1

1� ð�1Þn

n
sinðknx0Þ sinh½knðL� y 0Þ� þ sinðkny0Þ sinhðknx0Þ

sinhðknLÞ

� �

ð42Þ
where x0 and y0 are the local coordinates shown in Fig. 11b
and

kn ¼
np
L

ð43Þ

The solutions obtained using the staircase approach and
the proposed method are compared with the exact solu-
tions in Fig. 11c and d respectively. Again, the proposed
method reproduced the exact solution even with the coarse
mesh employed in the current calculation.

4.2.4. Remarks

The first three test problems show that the proposed
procedure with the departure from ‘‘regular” geometry
terms reproduced the exact solutions or the fine mesh solu-
tions using polar coordinate system. For these problems
without heat generation, and with known boundary tem-
peratures, the exact solutions are captured using very
coarse spatial grids.

4.3. Non-zero heat generation

The problems in this section test the ability of the pro-
posed method to model non-zero volumetric heat genera-
tion terms bP,extra (Eq. (37a)) and aP,extra (Eq. (37b)).
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Fig. 13. Conduction in an annulus with known boundary temperatures and non-zero source, (a) schematic, (b) dimensionless temperature
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i Þ=4k� contours with staircase method, and (c) dimensionless temperature ðT � T BÞ=½ _qðR2
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method.
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temperature at the given flux boundary.
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4.3.1. A triangular enclosure with a uniform volumetric heat

generation

Fig. 12a shows the schematic of a triangular enclosure
with a uniform volumetric heat generation _q. The two
mutually perpendicular isothermal sides (kept at 0) are of
unit length. The vertical surface is perfectly insulated.
The rectangular space is discretized using 10 � 15 uniform
Cartesian coordinates control volumes. Fig. 12b and c
show the dimensionless temperature ðT � T BÞ=ð _qL2=4kÞ
contours obtained using the proposed and the staircase
methods respectively. On the whole, both methods appear
to predict the temperature field well. When the boundary
temperature is given, the surface heat flux is of interest.
Fig. 12d shows the absolute values of the surface heat flux
along a wall y0 (see Fig. 12a). This heat flux is calculated
using Eq. (26). This normal distance from the wall nP is
nothing but the distance function used to define the irreg-
ular geometry! As shown in Fig. 12d, the heat flux pre-
dicted using the proposed method matches the exact
solution well. The staircase approach on the other hand
over- and under-predicts the heat flux along y0.

4.3.2. An annulus with a uniform volumetric heat generation

Fig. 13a shows the schematic of an annulus with a uni-
form volumetric heat generation _q. The inner and outer
radii are 0.5 and 1 respectively. The inner and outer sur-
faces are kept at a constant and uniform temperature of
0. A 2 � 2 square domain is discretized into 31 � 31
uniform control volumes. Fig. 13b and c show the dimen-
sionless temperature ðT � T BÞ=½ _qðR2

o � R2
i Þ=4k� contours

obtained using the staircase method and the proposed
method respectively. The staircase solution oscillates
around the exact solution. The solution from the proposed
method on the other hand compared very well with the
exact solution. The redistributions of the extra sources
aP,extra and bP,extra according to Eq. (37) eliminates the
oscillatory temperature of the staircase approach.
Although not shown, the wall heat fluxes calculated using
the proposed method matched the exact solutions well.
Similar to the previous test problem, the staircase method
produces erroneous wall heat fluxes.

4.3.3. Remarks

The above test problems show that the proposed
method can model irregular geometries with non-zero
source accurately. The redistributions of the extra sources
aP,extra and bP,extra eliminated the oscillatory temperature
due to the staircase effects. The Heaviside function is used
to calculate the volume of control volume. The proposed
method also predicted the boundary flux accurately.

4.4. Given flux and convective heat transfer boundaries

The problems in this section test the ability of the pro-
posed method to model given flux and convective heat
transfer terms QC,extra (Eq. (40a)) and QP,extra (Eq. (40b))
encountered at an irregular boundary.
4.4.1. A semi-circular enclosure with a known heat flux at the

curved surface

The semi-circular enclosure is revisited. As shown in
Fig. 14, the curved surface is subjected to a known uniform
heat flux of q. The temperature of the flat bottom surface is
kept at 0. The radius Ro is set to 1 and the thermal conduc-
tivity of the semi-circle is set to 1. A 2 � 1.2 rectangular
domain is discretized using 41 � 21 uniform control vol-
umes as shown in Fig. 14b. The height of the domain is
set to 1.2 to study the capabilities of the QC,extra term.
The solution is compared with the solution obtained using
very fine polar grids. Fig. 14c shows the dimensionless tem-
perature ðT � T BÞ=ð _qD2

o=4kÞ comparison between the pro-
posed method and the exact solution. The known
boundary heat flux is captured accurately by the QC,extra

term. Fig. 14d shows the comparison of the dimensionless
boundary temperature obtained using the proposed
method and the exact solution. Excellent agreements have
been obtained using the proposed method. This dimension-
less boundary temperature is obtained by using Eq. (28b).
4.4.2. A semi-circular enclosure with the curved surface

exchanging heat convectively with the surroundings

For this problem, the curved surface exchanges heat
convectively with the surroundings kept at T1 with a
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convective heat transfer coefficient h. For demonstration
purposes and without lost of generality, the convective heat
transfer coefficient h is set to 3 while the surroundings tem-
perature T1 is set to 1. The flat bottom surface is kept at 0.
0.7
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Fig. 15. Conduction in a semi-circular enclosure with a known boundary
temperature, convective transfer and zero source, (a) temperature
contours, and (b) boundary temperature at the given flux boundary.

Fig. 16. Conduction in an irregular geometry, (a) schematic, (b) boundary c
The radius Ro is set to 1 and the thermal conductivity of the
semi-circle is set to 1. A 2 � 1.2 rectangular domain is dis-
cretized using 81 � 41 uniform control volumes. The height
of the domain is set to 1.2 to study the capabilities of both
the QP,extra and QC,extra terms. The solution is compared
with the solution obtained using very fine polar
(100 � 50) grids. Fig. 15a shows the dimensionless temper-
ature (T � TB)/(T1 � TB) comparison between the pro-
posed method and the exact solution. Very good
agreement between the two solutions is observed indicating
that the convective heat flux at the boundary is captured
accurately by the QP,extra and QC,extra terms. Fig. 15b shows
the comparison of the dimensionless boundary temperature
obtained using the proposed method and the exact solu-
tion. Again, excellent agreements have been obtained using
the proposed method. This dimensionless wall temperature
is obtained by performing an energy balance at the surface.
The boundary temperature is calculated using Eq. (30b).

4.4.3. Remarks

The above test problems show that the proposed
method can model irregular geometries with known
boundary heat flux and convective heat transfer accurately.
The heat fluxes are introduced through the extra sources
QP,extra and QC,extra. The Dirac delta function is used to
calculate the heat transfer area. The proposed method also
predicted the boundary temperature accurately.
onditions, (c) temperature contours and (d) unstructured mesh (Fluent).
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4.5. An irregular geometry

To further demonstrate the proposed procedure, an
irregular geometry consists of circular holes and an equilat-
eral triangle located inside a circular object as shown in
Fig. 16a is modeled. The radius of the outer surface Ro is
1, the diameters of the smaller circles are 0.15. The smaller
circles are centered on a radius of ‘‘curvature” Rc of 0.5 and
are spaced evenly over the radius of ‘‘curvature”. The sides
of the equilateral triangle L are 0.5. The centroid of the tri-
angle is at (xc,yc) = (1, 1). The outer surface and the trian-
gle surface are cold while the smaller circles are kept hot
and cold alternately as shown in Fig. 16b. For this demon-
stration, cold and hot are set to 0 and 1 respectively.
Fig. 16c shows the temperature contours predicted using
the proposed approach and unstructured grid (Fig. 16d.
Fluent is used for this purpose). The present solution is
in good agreement with that of Fluent. Due to the triangu-
lar object, the solution repeats itself every 120�. This prob-
lem shows that irregular objects can be modeled using the
proposed method.
5. Concluding remarks

In this article, a distance-function-based Cartesian coor-
dinates (DIFCA) finite-volume method for irregular geom-
etries is presented. It is based on extending the standard
finite-volume discretization by additional irregular geomet-
rical effects which include regions of different properties,
source or external boundary of the domain of interest.
The irregular geometry is represented by a distance func-
tion on a Cartesian finite-volume mesh. With this the exist-
ing solver can be used even for irregular geometries with
minimal modifications. The developed procedure is applied
to eight demonstration problems. In these test problems,
the capabilities of the proposed procedure to model given
boundary values, given flux condition and convective heat
transfer at irregular boundaries are examined. Problems
with non-zero heat generation were also modeled using
the proposed method. The results agree quantitatively with
exact solutions, polar coordinates solutions, and unstruc-
tured grid solution.
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